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Abstract

In graph theory, graphs are mathematical structures containing a set of ver-

tices and a set of edges that represent the pairwise relationship of objects. A

graph can be labeled with a function that assigns a number to each vertex. A

harmonious labeling of a graph G assigns positive numbers to the vertices such

that the sum of each adjacent vertex label is distinct modulo the number of

edges in G. In our research we expanded the definition of harmonious labelings

to apply to infinite graphs, and investigated which infinite graphs are harmo-

nious by our definition. We also defined and investigated a new type of labeling

for both finite and infinite graphs, locally harmonious labeling.
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1 Introduction

The first paper in the history of graph theory was the “Seven Bridges of Königsberg.”

Königsberg, modern day Kaliningrad, was a town in Prussia; its citizens attempted

to find a way to cross each of the seven bridges across the Pregel River (see Fig. 1)

once and only once.

Figure 1: The Seven Bridges of Königsberg [1]

Leonhard Euler showed that it was impossible to do so, leading to the creation

of the field of graph theory. Graphs are mathematical structures that capture the

pairwise relationship of objects. See Definition 1.1 for a formal description. Because

graphs can represent pairwise relations, graph theory has applications in diverse fields

including computer science [4], biochemistry [9], and electrical engineering [3]. Graphs

are also used to model network flow, for example, and connections between people on

social media can be represented as graphs.
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Definition 1.1. A graph G = (V,E) consists of a nonempty set of vertices, V, and

a set of edges, E, which are two element subsets of V (see Fig. 2).

Figure 2: Example of a graph (specifically the complete graph on four vertices, K4).

In graph theory there are many inherent properties that families of graphs have.

One problem in graph theory is that of planar embedding. A planar graph is a graph

the edges of which do not cross, and the problem of planar embedding seeks to deter-

mine which graphs are planar. One of the most famous and important theorems in

graph theory is the Four Color Theorem. This states that no planar graph requires

more than four colors to color its vertices so that no adjacent vertices have the same

color. Finally, there is another interesting property of graphs known as Euler’s for-

mula. This states that v − e + f = 2 for all planar graphs, where v is the number of

vertices, e is the number of edges, and f is the number of faces. Euler’s formula has

proved its usefulness in a variety of mathematical fields, such as topology.

One thing in graph theory that is of interest is the study of graph labelings. A

graph is labeled with a function that takes each vertex and assigns it a number.

The first type of labeling that was studied in depth was a graceful labeling by Rosa

[10]. A graph labeling is graceful when the difference between each adjacent vertex

is unique for all edges modulo the number of edges. Many graphs have been shown

to be graceful, including all simple graphs with four or less vertices, all paths, and all

caterpillars. A famous unsolved problem relating to graceful labelings is the Graceful
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Tree Conjecture (also called the Ringel-Kotzig Conjecture), which says that all finite

trees are graceful. This result has been proven for infinite graphs [2]. Since Rosa,

over 2,000 papers on labelings have been written (see [5] for an extensive survey).

An example of one of these papers is [7], which showed that certain families of finite

graphs, such as caterpillars, are harmonious (see Definition 2.14). Our research fo-

cused on extending the definition of harmonious labelings to infinite graphs and then

determining which families of infinite graphs are harmonious.

In Section 2 we will define basic concepts relevant to graph theory and graph

labelings. In Section 3 we will consider harmonious labeling and the results thereof.

In Section 4 we will define locally harmonious labeling and consider which graphs are

locally harmonious. Finally, in Section 5 we will conclude our findings.

2 Preliminaries

In this section are important definitions and examples relating to the topic of the

paper. All of these definitions were obtained from [8].

Definition 2.1. A function for which all outputs can only be obtained with a single

input is an injective function, or an injection.

Definition 2.2. A function which is injective and for which also all elements in the

range can be obtained as outputs is a bijective function, or a bijection.

Definition 2.3. A ∪ B is the union of A and B, the set containing all elements which

are elements of A or B or both.

Definition 2.4. A ⊂ B asserts that A is a proper subset of B: every element of A

is also an element of B, but A 6= B. A ⊃ B asserts that A is a proper superset of B:

every element of B is also an element of A, but A 6= B.
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Definition 2.5. Two vertices are adjacent if they are connected by an edge. Two

edges are adjacent if they share a vertex.

Definition 2.6. A graph is bipartite if it is possible to divide its vertices into two

disjoint sets such that there are no edges between any two vertices in the same set.

Definition 2.7. A complete bipartite graph is a bipartite graph such that every pair

of graph vertices in the two sets are adjacent, and is denoted Km,n, where m and n

are the sizes of the two disjoint sets described in Definition 2.6.

Definition 2.8. A graph is connected if there is a path from any vertex to any other

vertex (see Fig. 3).

a b

Figure 3: A connected graph (a) and a disconnected graph (b).

Definition 2.9. The degree of a vertex is the number of edges incident to it, denoted

by d(vi) (see Fig. 4).

Figure 4: A graph (specifically a star) with the central vertex having degree 8.
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Definition 2.10. A path is a connected graph with all vertices having a maximum

degree of two. A path with n vertices is denoted Pn (see Fig. 5).

Definition 2.11. A cycle is a path that starts and stops at the same vertex, but

contains no other repeated vertices. A cycle with n vertices is denoted Cn (see Fig. 6).

Definition 2.12. A tree is a graph with no cycles (see Fig. 7).

Figure 5: An example of a path. Figure 6: An example of a cycle.

Figure 7: An example of a tree.

In general, a graph is labeled with a function that takes each vertex and assigns

it a number. Graph labelings are of great interest to mathematicians and over 2000

papers have been written relating to graph labelings in general or specific graph

labelings [5].

Definition 2.13. A graph labeling of a graph G is a map ϕ from the vertex set of G

to a countable set (often nonnegative integers). The label of each edge (vi, vj) ∈ E

can then be induced from the labels ϕ(vi) and ϕ(vj) of vertices vi and vj (see Fig. 8).
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42 1000000

01

Figure 8: Example of a labeled graph

Definition 2.14. A graph G = (V,E) with e edges has a harmonious labeling if there

exists an injective (see Definition 2.1) function ϕ from the vertices of G to the group

of positive integers Z+ modulo e such that when each edge (vi, vj) ∈ E is assigned

the label ϕ(vi) + ϕ(vj) (mod e), the resulting edge labels are distinct. A graph G

that meets the above criterion is said to be harmonious (see Fig. 9).
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Figure 9: Three labeled harmonious graphs.

Certain finite graphs have been shown to be harmonious, such as caterpillars and

odd cycles [7]. Other variations of harmonious labelings, such as even harmonious

labelings [6], have also been studied. However, our research was the first to consider

harmonious labelings for infinite graphs. In the next section, we will discuss which

graphs we found to be harmonious and where our research into infinite graphs led us.
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3 Harmonious

We attempted to find a way to build a finite harmonious graph in a way that

could be continued indefinitely. This resulted in this type of graph (see Fig. 10) being

harmonious.

Definition 3.1. Dn is a graph on 2n+3 vertices with 4n+3 edges. D0 is ({v0, v1, v2},

{(v0, v1), (v1, v2), (v0, v2)}). For each n > 0 we add v2n+1 and v2n+2 and the edges

(v2n+1, v2n+2), (v2n, v2n+1), (v2n−1, v2n+1), (v2n, v2n+2).
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Figure 10: D0, D1, and D2 from left to right.

Theorem 3.1. All Dn are harmonious.

Proof. We will show that all Dn are harmonious by showing that the graph can be

built to an arbitrary length.

Stage 0: Add v0; ϕ(v0) = 0.

Stage 1: Add the vertices v1 and v2 along with the edges (v0, v1), (v0, v2), and

(v1, v2); ϕ(v1) = 1 and ϕ(v2) = 2.

Stage n ≥ 2: Add the vertices v2n−1 and v2n along with the edges (v2n−1, v2n),

(v2n−2, v2n), (v2n−1, v2n−2), and (v2n−1, v2n−3); ϕ(v2n−1) = 2n− 1 and ϕ(v2n) = 2n.

Note that the above procedure guarantees that at each stage the graph is harmo-

nious. QED

The current definition of harmonious labeling being limited to finite graphs, we

began to wonder how it could apply to infinite graphs and which infinite graphs would

be harmonious.
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Definition 3.2. An infinite graph G = (V,E) has a harmonious labeling if there

exists a bijection (see Definition 2.2) ϕ from the vertices of G to the natural numbers

such that the induced edge label ϕ(vi) + ϕ(vj) for each edge is bijective to Z+.

Note that since the method used in the proof of Theorem 3.1 can be repeated

indefinitely, the following graph is also harmonious.

Definition 3.3. The infinite graph D =
⋃
n∈N

Dn.

Once we had a definition of a harmonious labeling for infinite graphs, we began

to answer our second question of which infinite graphs are harmonious, starting with

the simplest infinite graph, the semi-infinite path (see Fig. 11).

Figure 11: The semi-infinite path

Theorem 3.2. The semi-infinite path is not harmonious.

Proof. To show that the semi-infinite path is not harmonious, we will show that it

is impossible for the numbers 1, 2, and 3 to all be induced edge labels on the path.

Consider the edge label 1. The only way for an edge to be labeled 1 is for two

adjacent vertices to be labeled 0 and 1. Next, consider the edge label 2. The only

way for an edge to be labeled 2 is for two adjacent vertices to be labeled 0 and 2.

Finally, the only way for an edge to be labeled 3 is either for two adjacent vertices

to be labeled 0 and 3, or for two adjacent vertices to be labeled 1 and 2. Neither of

these are possible, since 0 cannot be adjacent to three vertices and there can be no

cycles in the semi-infinite path. Therefore, it is impossible to harmoniously label the

semi-infinite path. QED

In the next section, we will define a new type of labeling that we came across in

our research and show which graphs we found to have this new type of labeling.
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4 Locally Harmonious

An interesting variation of the definition of harmonious labeling we found was the

locally harmonious labeling.

Definition 4.1. A graph G = (V,E) with e edges has a locally harmonious labeling

if there exists an injective function ϕ from the vertices of G to the group of positive

integers Z+ mod e such that the induced edge label ϕ(vi) + ϕ(vj) is in bijection to

the set {0, . . . , d(vi)− 1} mod d(vi) for each vertex vi (see Fig. 12).
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Figure 12: Examples of locally harmonious graphs

Again, we started our investigation of this type of labeling with the simplest finite

graph, the path.

0 2 1 3

Figure 13: Locally Harmonious Labeling of P4

Lemma 4.1. All paths P4n are locally harmonious.

Proof. We will show that all paths P4n are locally harmonious by induction.

Base case: P4 is locally harmonious (see Fig. 13).

Now we will assume that P4n is harmonious.
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Induction step: Now we will show P4n+4 is locally harmonious. To show this, we

must show that all labels {0, . . . , 4n+3} have been used and that the induced edge

labels satisfy Definition 4.1. In the graph of P4n, the vertex labels {0, . . . , 4n− 1}

must have been used. The vertices v4n and v4n+1, as shown in Fig. 14, can be

labeled as the two numbers in {4n, . . . , 4n + 3} with opposite parity to v4n−1.

v4n+2 and v4n+3 can be labeled as the two with the same parity. Thus, all labels in

{0, . . . , 4n+3} have been used, and the graph is locally harmonious. By induction,

all P4n are harmonious. QED

v0 v1 v2 v4n v4n+1 v4n+2 v4n+3

Figure 14: Locally Harmonious Labeling of P4n+4

Theorem 4.1. All paths are locally harmonious.

Proof. Consider the path Pn.

When n ≡ 1 (mod 4):

By Lemma 4.1, the path Pn−1 is locally harmonious. One end of Pn−1 will be

labeled an even number, and the other end will be labeled an odd number, as can

be seen from the proof of Lemma 4.1. To get Pn from Pn−1, we add vn and the edge

(vn, vi), where vi is the vertex on the end labeled an odd number. ϕ(vn) = n− 1.

Now vi has an even and an odd labeled vertex adjacent to it, so it satisfies the

definition of a locally harmonious labeling.

When n ≡ 3 (mod 4):

Similarly, we know that the path Pn+1 is locally harmonious. Call the vertex in

Pn+1 with label n vi, and the vertex on the end which is labeled an even number

vj. Switch the labels of these two vertices, and remove vj, which is now labeled

n. Since the labels we switch are both even, the graph is locally harmonious after

the switch, as well as after the removal of vj.

When n ≡ 2 (mod 4):
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Similar to the previous two cases, we know that the path Pn−2 is locally harmo-

nious. Call the vertex on the end which is labeled an even number vi and the

vertex on the end which is labeled an odd number vj. Add the vertices vn−1 and

vn, and the edges (vn−1, vi) and (vn, vj). ϕ(vn−1) = n − 1 and ϕ(vn) = n − 2.

Now the vertices vi and vj have one even and one odd labeled vertex adjacent to

them, so they still satisfy the definition of a locally harmonious labeling, as well

as the new vertices vn−1 and vn of degree one. See Fig. 15 for examples of each

case. QED

2 0 1 3 4

2 0 1 3

2 0 1

0 1

Figure 15: The paths P2, P3, P4, and P5 from top to bottom.

We also found that all complete bipartite graphs Km,n are locally harmonious.

Theorem 4.2. All complete bipartite graphs are locally harmonious.

Proof. First, divide the bipartite graph Km,n into the two disjoint sets described in

Definition 2.6: A = {v0, v1, . . . , vm−2, vm−1} and B = {vm, vm+1, . . . , vm+n−2, vm+n−1}

(see Fig. 16). The vertices in A can be labeled with the labels {0, 1, . . . ,m−2,m−1}

and the vertices in B can be labeled with the labels {m,m+1, . . . ,m+n−2,m+n−1}.

Any vertex vi ∈ A is adjacent to all vertices in B, the labels of which are all distinct

mod n. Therefore, all induced edge labels ϕ(vi) + ϕ(vj) for all the vertices vj ∈ B

will be distinct mod n. The same is true for all vertices in B, therefore the graph is

locally harmonious. QED
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A

B

0 1 2 3 4
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Figure 16: Locally Harmonious Labeling of K5,3

As we did with harmonious labeling, we defined locally harmonious labeling for

the case of infinite graphs.

Definition 4.2. An infinite graph G = (V,E) has a locally harmonious labeling if

there exists a bijection from the vertices of G to the natural numbers such that the

induced edge label ϕ(vi) + ϕ(vj) is in bijection to the set {0, . . . , d(vi)−1} mod d(vi)

for each vertex vi.

We found that for any finite locally harmonious graph with minimum degree one,

there is an infinite graph which contains it as a proper subset that is also locally

harmonious.

Theorem 4.3. Assume G is a finite locally harmonious graph with minimum degree

one. There exists an infinite graph G̃ ⊃ G which is locally harmonious.

Proof. Consider a finite locally harmonious graph with minimum degree one G (see

Fig. 17). Find a vertex of degree one; call it vi and its neighbor vj. Now consider the

semi-infinite path with vertices {p0, p1, . . . } and edges {(p0, p1), (p1, p2), . . . }. Identify

vi with p0. Let ϕ(p1) be the least nonnegative integer not already used as a label such

that it is of parity opposite to ϕ(vj). In general, let ϕ(pn) be the least nonnegative

integer not already used as a label such that it is of parity opposite to ϕ(pn−2).

The resulting graph is an infinite locally harmonious graph which contains G (see

Fig. 18). QED
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Figure 17: A finite locally harmonious graph G with at least one vertex of degree one.
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Figure 18: An infinite locally harmonious graph which contains G.

5 Conclusion

In Section 3, we were able to prove that all graphs Dn are harmonious in a way

that could be extended to prove that the infinite graph D is harmonious. We also

proved that the semi-infinite path is not harmonious. In Section 4, we were able to

prove that all paths and complete bipartite graphs Kn,n are locally harmonious. We

also showed that for any finite locally harmonious graph G with minimum degree one,

there is an infinite locally harmonious graph that contains G. This research helps to

better understand infinite graphs and harmonious labeling, and opens up possibilities

for new labelings such as the locally harmonious labeling.
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